

LA-UR-16-22484

Approved for public release; distribution is unlimited.

Title: Nuclear Cloud Lofting

Author(s): Walker, Andrew Charles

Intended for: Seminar

Issued: 2016-04-13

Tumbler-Snapper Charlie Nevada Test Site 31 kT

ISR-1 Seminar Nuclear Cloud Lofting

Greenhouse George Pacific Proving Grounds 225 kT

April 19th, 2016

Outline

- Motivation
- Background
- Lofting Methodologies
 - Empirical
 - Parcel Methods
 - Navier-Stokes
- DELFIC Model
- Validation
- DIORAMA Integration
- Conclusions

Tumbler-Snapper Dog Nevada Test Site 19 kT

Total video duration: ~55 sec

Ground Zero Height: ~4,200 ft MSL Initial Burst Height: ~5,200 ft MSL Cloud Height at end of video: ~15,000 ft MSL

Final stabilized cloud properties (not shown in animation):

Cloud Top Height: 44,000 ft MSL

Cloud Bottom Height: 28,000 ft MSL

Motivation

SNDD

- Space-based Nuclear Detonation
 Detection
- Space-based instruments
 monitor a variety of
 phenomenologies for evidence of
 nuclear detonations
- Measurable phenomenologies vary with altitude

Figure courtesy of U.S. DOE (2004)

- For cloud lofting, we are interested in delayed gamma rays
 - Detected in space and transition region
 - Absorbed at low altitudes

Motivation – Delayed Gamma Rays Los Alamos

Emission

- The gradual radioactive decay of fission products creates delayed gamma rays
- The emission location of these delayed gamma rays follows the rise of the nuclear cloud

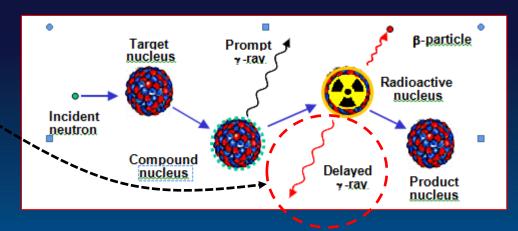
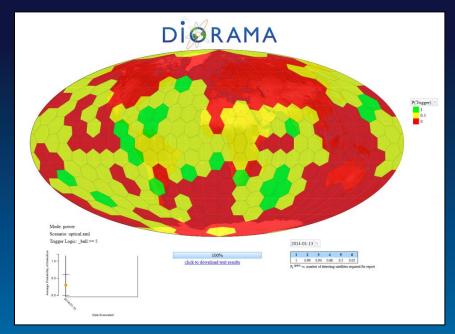


Figure from The Effects of Nuclear Weapons by Glasstone (1977)

Absorption

- At low altitudes, delayed gamma rays are absorbed by the atmosphere
- At high altitudes, they may reach space-based instruments
- Lofting may bring the modeled radioactive cloud to an altitude where delayed gamma rays are detected by SNDD instruments



Motivation

DIORAMA

- Distributed Infrastructure Offering Real-time Access for Modeling and Analysis
- A framework that supports USNDS simulations from source to ground processing
- Designed to replace the disparate array of specialized USNDS tools
- Goal: To incorporate cloud lofting model into DIORAMA to increase simulated detection of delayed gamma rays

DIORAMA coverage simulation using only the optical phenemonology. Coverage uses a constellation of GPS satellites with look angle respondents (LARs).



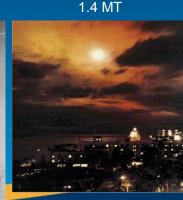
Background - Burst Types

- Nuclear detonations can be divided into 5 "burst" categories
 - Underground
 - Underwater
 - (< ~5000 ft above surface) <u>Surface</u>
 - $(> \sim 5,000 \text{ ft and } < \sim 100,000 \text{ ft})$ Air
 - (>~100,000 ft) High-Altitude
- For cloud lofting, only the latter three are considered.

UNDERGROUND Plumbbob Rainier Nevada Test Site 1.7 kT

UNDERWATER Crossroads Baker Pacific Proving Grounds 23 kT

SURFACE


Buster-Jangle Sugar

Nevada Test Site

1.2 kT

UNCLASSIFIED

Upshot-Knothole Dixie Nevada Test Site 11 kT

HIGH ALTITUDE

Fishbowl Starfish Prime

Pacific Proving Grounds

Background – Lofting Basics

- Nuclear Cloud Lofting is the rise and growth of a cloud (resulting from a nuclear detonation) through the atmosphere
- At low altitudes (<50 km), the rise of the cloud is dominated by the buoyant force
- At higher altitudes, the ballistic force becomes important

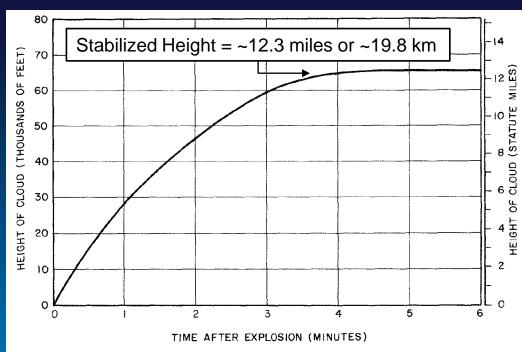


Figure 2.12. Height of cloud top above burst height at various times after a 1-megaton explosion for a moderately low air burst.

Figure from The Effects of Nuclear Weapons by Glasstone (1977)

Background – Pressure Equilibrium

- The physics in the first few seconds after a nuclear detonation are extremely complex
- However, within a matter of seconds, the nuclear cloud has come into pressure equilibrium with the surrounding atmosphere and cooled from millions of Kelvin to several thousand Kelvin
- Pressure equilibrium simply states: $P_c = P_a$
- This can be rewritten with the ideal gas law: $P = \rho k_B T$

 ρ_c = Cloud density

 ρ_a = Atmospheric density

 k_{R} = Boltzmann constant

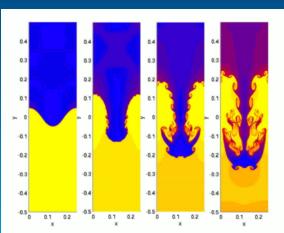
 T_c = Cloud temperature T_a = Atmospheric temperature

 P_c = Cloud Pressure

 P_q = Atmospheric Pressure

Background – Buoyancy

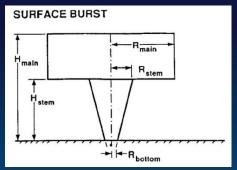
- The strong buoyant force is the result of the high temperature of the cloud (and hence low density due to pressure equilibrium) that causes it rise much like a hot air balloon
- The buoyant force is defined as $F_B = V_c(\rho_a \rho_c)g$
- For a ~50 kT detonation, the cloud temperature when pressure equilibrium is achieved is ~3000 K compared to the atmospheric temperature of ~300 K (assuming a surface burst)
- For this case, the nuclear cloud is therefore ~10x less dense than the surrounding atmosphere

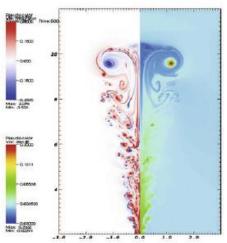

 V_c = Cloud Volume ρ_c = Cloud density ρ_a = atmospheric density g = gravitational acceleration

Background – Toroidal Vortex

• Los Alamos
NATIONAL LABORATORY
EST.1943

- A Rayleigh-Taylor instability forms due to the different densities of the cloud and atmosphere
 - (Upper Right) The Rayleigh-Taylor instability in the nuclear cloud
 - (Lower Right) A Rayleigh-Taylor instability for a heavier fluid above a lighter (immisicible) fluid
- This manifests in a toroidal vortex that entrains atmospheric gas and causes the cloud to rapidly grow in radius and mass
- The entrainment of cooler atmospheric gas causes the average cloud temperature and density to approach atmospheric equilibrium
- The cloud stabilizes when equilibrium is achieved and the buoyant force is zero

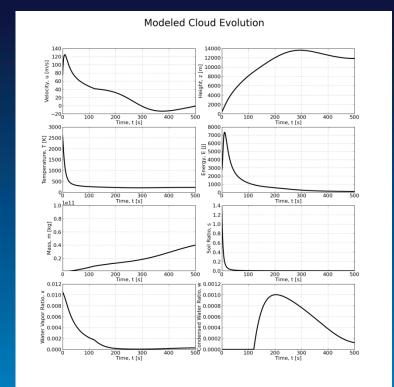




Lofting Methodologies

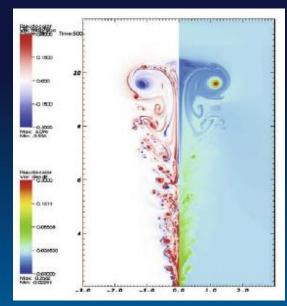
- There are three primary methodologies that can be applied to the problem of Cloud Lofting:
 - Empirical
 - Parcel
 - Navier-Stokes
- A <u>parcel</u> methodology was chosen for this work as a tradeoff between speed and accuracy

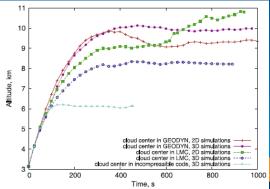
Empirical Models


- Ignores the physics and uses fitting equations to best fit the data
- Previous empirical models
 - Newgarden and Spohn (1955) (LASL)
 - Brode (1968)
 - Harvey (1992)
 - NATO (2014)
- Pros
 - Least computational effort
 - Comparable accuracy to parcel methods for stabilized cloud height
- Cons
 - Limited range of applicability (only certain yields, altitudes, etc.)
 - Neglect atmospheric properties
 - Only deal with stabilized cloud height and ignore evolution

Parcel Methods

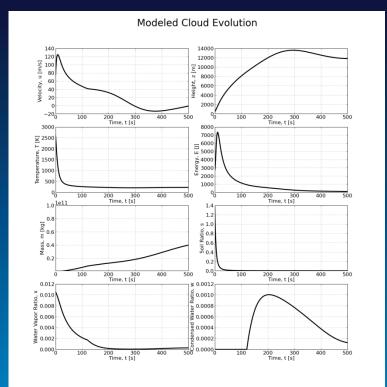
- Simplified physics equations that treat cloud as a single homogeneous unit
- Previous parcel methods
 - Taylor (1945)
 - Machta (1950)
 - Huebsch (1964) DELFIC Model
 - Onufriev (1970)
- Pros
 - Extended range of validity (higher altitudes, atmospheric effects)
 - Includes temporal evolution of cloud
- Tradeoffs
 - Moderate error (~10% error in height over range of weapon yields and altitudes)
 - Moderate computational effort (~1 2
 seconds per simulation)




Sample DELFIC Model Output – Time history of 8 cloud properties until stabilization

Navier-Stokes Methods

- Non-linear partial differential set of equations for continuum fluids
- Previous Navier-Stokes methods
 - Krispin (2000)
 - Kanarska (2009)
- Pros
 - Most accurate (~5% error in cloud height compared to observations)
 - Accurate throughout continuum region (< 200 km)
 - Full evolution of the cloud
- Cons
 - Multi-year, multi-person efforts to program
 - Computationally expensive (~Hours of computation)


- DIORAMA requires cloud lofting computed < 10 seconds
 - This constraint eliminates the **Navier-Stokes equations**
- DIORAMA requires the <u>time history</u> of the cloud height
 - This constraint eliminates the empirical models
- Only the parcel methodologies remain
- The DELFIC parcel method was chosen because:
 - DELFIC = Defense Land Fallout Interpretive Code
 - Simulations only require ~5 seconds on a single core
 - The time history of the cloud is given
 - Atmospheric properties are taken into account (e.g. density, temperature, humidity)

DELFIC Model - Fundamentals

- DELFIC solves a set of 8 coupled ordinary differential equations
- The 8 independent variables are:
 - Temperature, T
 - Mass, m
 - Height, z
 - Velocity, v
 - Energy, E
 - Soil ratio, s
 - Water Vapor Ratio, x
 - Condensed Water Ratio, w

Sample DELFIC Model Output – Time history of 8 cloud properties until stabilization

Model – Initial Conditions (P1)

- To solve the set of ODEs, initial conditions are required
- The physics of the fireball prior to pressure equilibrium are ignored and semi-empirical relations fit to observational data are used for the initial conditions
- Temperature $T_{ci} = K \left(\frac{t_i}{t_{am}}\right)^n + 1500$
 - K and n are yield dependent empirical parameters:
 - $K = 6847W^{-0.0131}$
 - $n = -0.4473W^{0.0436}$
 - t_i Time of pressure equilibrium (seconds) $t_i = 56t_{2m}W^{-0.30}$
 - t_{2m} Time of the 2nd temperature maximum $t_{2m} = 0.045 W^{0.42}$

Model – Initial Conditions (P2)

- The initial mass of the cloud is split between air, water vapor, and soil.
 - The cloud is assumed to be so hot that no condensed water vapor can exist
- The energy that heats the cloud, H_i is assumed to be 45% of the total yield
 - This factor is the result of extensive simulations with the original DELFIC code
 - A factor φ defines the fraction of energy that heats water for a blast over water
- Soil Mass, $m_{si} = k_{\Lambda} W^{3/3.4} (180 \lambda)^2 (360 + \lambda)$
 - λ is the scaled height of burst and $k_{\Lambda} = 0.07741 \text{ kg ft}^3$
 - For pure airbursts, m_{si} is set to a constant weapon mass

$$\text{Air Mass, } m_{ai} = \frac{\varphi \left[H - m_{si} \int_{T_{ei}}^{T_{si}} c_s(T) dT \right]}{\int_{T_{ei}}^{T_{ci}} c_{pa}(T) dT + x_e \int_{T_{ei}}^{T_{ci}} c_{pw}(T) dT }$$

- $-c_s(T)$, $c_{pa}(T)$, and $c_{pw}(T)$ are the specific heats of soil, air, and water (constant pressure)
- T_{si} , T_{ei} , and T_{ci} are the initial temperatures of soil, the atmosphere, and cloud [K]
- x_e is the atmospheric ratio of water vapor

• Los Alamos NATIONAL LABORATORY EST.1943

Model – Initial Conditions (P3)

Initial Water Vapor Mass,
$$m_{\chi i}=rac{(1-\varphi)\left[H-m_{si}\int_{T_{ei}}^{T_{si}}c_{s}(T)dT
ight]}{\int_{T_{ei}}^{T_{ci}}c_{pw}(T)dT+L}+x_{e}m_{ai}$$

- Initial Condensed Water Mass, $m_{wi}=0$
- Species Ratios
 - Soil Ratio, $s_i = \frac{m_{si}}{m_{gi}}$
 - Water Vapor Ratio, $x_i = \frac{m_{xi}}{m_{gi}}$
 - Condensed Water Ratio, $w_i = \frac{m_{wi}}{m_{ai}}$
- Height, $z_i = z_{GZ} + z_{HOB} + 90W^{1/3}$
- Velocity, $u_i=1.2\sqrt{gR_{ci}}$
- Energy Density, $E_i=rac{1}{2}u_i^2$

 z_i = Initial cloud center height [m] z_{GZ} = Height of ground zero [m] z_{HOB} = Height of burst above GZ [m]

 u_i = Initial cloud center velocity [m/s] E_i = Initial cloud energy density [J/kg] R_{ci} = Initial horizontal cloud radius [m] UNCLASSIFIED

L = Latent heat of condensation g = Gravitational acceleration [m/s²] W = Yield [kT]

Model – Wet & Dry Equations

- Due to the importance of condensation in the cloud, the model switches between two sets of equations "wet" and "dry"
 - The wet equations include the effect of the latent heat of condensation of water when liquid water is present
 - Latent heat is ignored in the dry equations since there is no condensed water
- Switch between "wet" and "dry" equations controlled by P_{ν}
 - P_{ν} = partial pressure of water vapor in the cloud [Pa]
 - $-P_{ws}$ = saturation water vapor pressure [Pa]
 - If $P_{\nu} > P_{ws}$, "wet" equations apply
 - If $P_{\nu} \leq P_{ws}$, "dry" equations apply

Los Alamos NATIONAL LABORATORY EST. 1943

Model – Differential Equations

 The set of ODEs is solved using an 8th order accurate adaptive timestep scheme using the GNU Scientific Library (GSL)

• Height:
$$\frac{dz}{dt} = u$$
 a b c
• Velocity: $\frac{du}{dt} = \left(\frac{T_{vc}}{T_{ve}}\beta - 1\right)g - \left(\frac{2k_2v}{H_c}\frac{T_{vc}}{T_{ve}}\beta + \frac{1}{m}\frac{dm}{dt}\right)u$

- Term 'a' accounts for the cloud buoyancy
- Term 'b' accounts for eddy-viscous drag
- Term 'c' accounts for entrainment drag

```
z = Cloud center height [m] T_{vc} = u = Cloud center velocity [m/s] T_{ve} = t = Time from detonation [s] H_c = t
```

 T_{vc} = Virtual cloud temperature [K]

 T_{ve} = Virtual atmos. temperature [K]

 H_c = Vertical cloud radius [m]

 k_2 = kinetic to turbulent energy conversion factor [unitless]

v = characteristic cloud velocity [m/s]

 β = Gas to total density ratio [unitless]

g = Gravitational acceleration [m/s²]

Model – Temperature Equations

The temperature equation has both "wet" and "dry" forms

• Dry equation:
$$\frac{dT_c}{dt} = \frac{-\beta}{\bar{c}_p(T_c)} \left[\frac{T_{vc}}{T_{ve}} gu + \frac{1}{\beta m} \frac{dm}{dt} - \zeta \right]$$

- Term 'a' accounts for adiabatic expansion
- Term 'b' accounts for entrainment
- Term 'c' accounts for turbulent dissipation of kinetic energy to heat

Wet equation:

$$\frac{\overline{dT_c}}{dt} = \frac{\beta}{1 + \frac{L^2x\varepsilon}{c_p(T_c)R_aT_c^2}} \left[\left(T_c - T_e + \frac{L(x - x_e)}{c_p(T_c)} \right) \frac{1}{m\beta} \frac{dm}{dt} + \frac{T_{vc}}{T_{ve}} \frac{gu}{c_p(T_c)} \left(1 + \frac{Lx}{R_aT_c} \right) - \frac{\zeta}{c_p(T_c)} \right]$$

Terms are the same as for "dry" equation

Model – Energy & Soil Equations

Energy:
$$\frac{dE}{dt} = \frac{2k_2\beta u^2 v}{H_c} \frac{T_{vc}}{T_{ve}} + \frac{u^2}{2m} \frac{dm}{dt} - \frac{E}{m} \frac{dm}{dt} - \zeta$$

- Term 'a' accounts for turbulent energy generated by eddy viscous drag
- Term 'b' accounts for turbulent energy generated by entrainment
- Term 'c' accounts for entrainment dilution of energy
- Term 'd' accounts for turbulent dissipation of kinetic energy to heat

Soil:
$$\frac{ds}{dt} = -\frac{1}{\beta} \left(\frac{1+x}{1+x_e} \right) \frac{s}{m} \frac{dm}{dt}$$

Term 'a' accounts for entrainment dilution

Model – Mass Equations

The mass equation has both "wet" and "dry" forms

Dry equation:
$$\frac{dm}{dt} = \frac{mS\mu v}{V}$$

- Term 'a' accounts for entrainment
- The mass lost to fallout is neglected as studies have shown it is negligible
- $S = \text{cloud surface area } [\text{m}^2], V = \text{cloud volume } [\text{m}^3], \mu = \text{entrainment factor}$

Wet equation:

$$\frac{dm}{dt} = \frac{\beta m}{1 - \frac{1}{T_{vc}} \left(\frac{\beta}{1 + \frac{L^2 x \varepsilon}{c_p(T_c) R_a T_c^2}}\right) \left[T_c - T_e + \frac{L(x - x_e)}{c_p(T_c)}\right]} \times \left\{\frac{S \mu v}{V} + \frac{1}{T_{vc}} \left(\frac{\beta}{1 + \frac{L^2 x \varepsilon}{c_p(T_c) R_a T_c^2}}\right) \left[\frac{gu}{c_p(T_c)} \frac{T_{vc}}{T_{ve}} \left(1 + \frac{Lx}{R_a T_c}\right) - \frac{\zeta}{c_p(T_c)}\right] - \frac{gu}{R_a T_{ve}}\right\}$$

The entire right-hand side accounts for entrainment modified for the condensation of water

The water vapor equation has both "wet" and "dry" forms

• Dry equation:
$$\frac{dx}{dt} = -\frac{1+x+s}{1+x_e}(x-x_e)\frac{1}{m}\frac{dm}{dt}$$

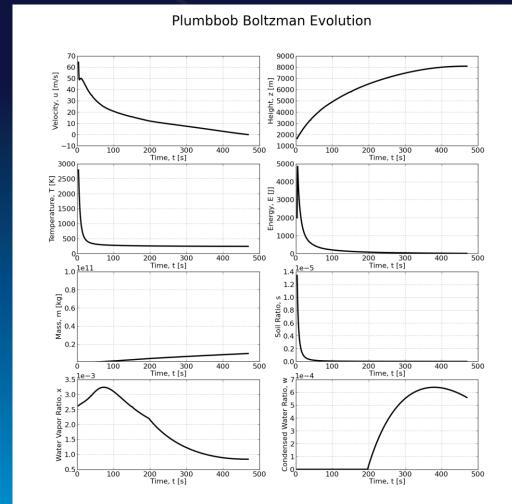
- Term 'a' accounts for entrainment
- Wet equation: $\frac{dx}{dt} = \left[\left(1 + \frac{x}{\varepsilon} \right) \frac{L\varepsilon}{R_a T_c^2} \frac{dT}{dt} + \left(1 + \frac{x}{\varepsilon} \right) \frac{gu}{R_a T_{ve}} \right] x$
 - Terms are the same as for the "dry" equation

Model – Cond. Water Equations

- The condensed water equation has both "wet" and "dry" forms
- **Dry equation**: $\frac{dw}{dt} = 0$
 - No condensed water exists under "dry" conditions

• Wet equation:
$$\frac{dw}{dt} = -\frac{1}{\beta} \left(\frac{1+x}{1+x_e} \right) (w+x-x_e) \frac{1}{m} \frac{dm}{dt} - \frac{dx}{dt}$$

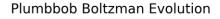
- Term 'a' accounts for entrainment dilution
- Term 'b' accounts for condensation of water vapor

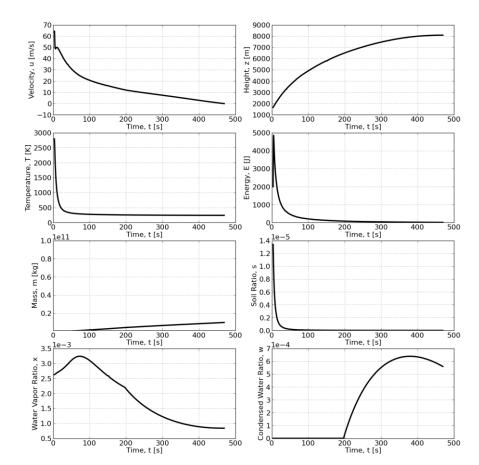

- Nearly all of the ODEs are dependent on the atmospheric properties such as temperature, pressure, and humidity
- To compute atmospheric properties, NRLMSISE-00 is used
 - NRLMSISE-00 = Naval Research Laboratory Mass Spectrometer and Incoherent Scatter
 - MSIS does not include humidity
- Humidity data is taken from NCAR archived datasets
 - NCAR = National Center for Atmospheric Research
 - 16 datasets are interpolated for the simulation humidity
 - 4 seasonal datasets groups separated by 3 months
 - Each seasonal dataset group includes data from a single day with 4 datasets separated by 6 hours
 - Each dataset has the maximum NCAR vertical resolution (~10 kPa intervals)
 - 10 x 10 degree resolution for latitude and longitude

Simulation Results

- Plumbbob Boltzman
 - 12 kT Yield
 - Nevada Test Site
 - 500 ft Height of Burst
- Cloud top height
 - Observed: 10058 m
 - Model: 9308 m
 - Percentage error: 7.2%
- Cloud bottom height
 - Observed: 7010 m
 - Model: 6819 m
 - Percentage error: 2.7%

Simulation Results

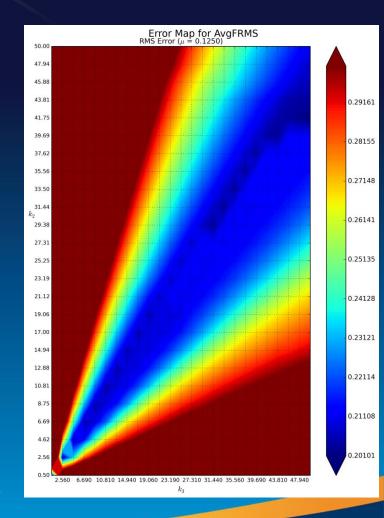



Initial cloud properties

- Initial velocity, ~60 m/s
- Initial temperature, ~2800 K
- Initial cloud height, ~700 m

Evolution properties

- Cloud height asymptotically approaches stabilization height
- Temperature and energy rapidly decay due to entrainment and mixing with atmospheric gas
- Mass increases nearly linearly
- Soil ratio decays rapidly due to entrainment of atmospheric gas
- Discontinuity in water vapor at ~200 s signals switch to "wet" equations



Model Tuning & Validation

- The cloud lofting module includes three tunable parameters
 - $-\mu$ = entrainment parameter
 - $-k_2$ = eddy viscous drag parameter
 - $-k_3$ = turbulent dissipation rate pre-factor
- These parameters are necessary because the complex physics of the turbulent mixing between the cloud and atmospheric gas is not modeled in detail
- The parameters are tuned by a brute force iterative search over the global parameter space
- For each set of tuning parameters, 54
 simulations corresponding to historical nuclear
 tests are run

Model Tuning & Validation

For each simulation, the top, bottom, and average cloud height fractional deviation (FD) is computed using:

$$- FD = \frac{z_{obs} - z_{calc}}{z_{obs}}$$

To determine the error across all 54 tests for a specific set of parameters, the fractional root mean square (FRMS) is computed:

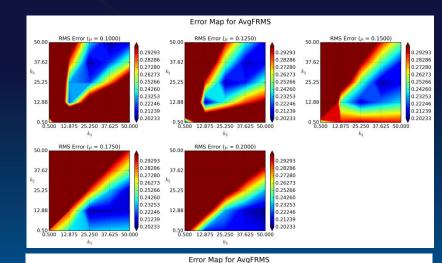
$$- FRMS = \sqrt{\frac{\sum_{N} (FD)^2}{N}}$$

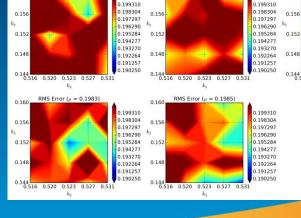
Errors were also computed to previous DELFIC implementations (Jodoin, 1994)

Test	Yield (kt)	Observed Cloud	Model Top H	leight (m)	Fractional Dev.	
		Top (m)	Jodoin	C++	Jodoin	C++
Hardtackli Humboldt	0.0078	2286	2274	2283	0.0054	-0.0002
Hardtackli Catron	0.021	2591	2656	2509	-0.0253	0.0301
Hardtackli Vesta	0.024	3048	3535	2961	-0.1598	0.0268
Hardtackli DonaAna	0.037	3353	4209	2897	-0.2554	0.1347
Hardtackll Hidalgo	0.077	3658	3906	3180	-0.0679	0.1291
Hardtackli Quay	0.079	3048	3094	3124	-0.015	-0.0269
Hardtackll Eddy	0.083	3353	4063	3240	-0.2119	0.0317
Hardtackll RioArriba	0.09	4115	3803	3125	0.0757	0.2392
Hardtackli Wrangell	0.115	3048	3256	3406	-0.0683	-0.1196
Plumbbob Franklin	0.14	5090	5498	3405	-0.08	0.3297
Plumbbob Wheeler	0.197	5182	5126	3717	0.0108	0.281
Upshot-Knothole Ray	0.2	3901	3782	3658	0.0307	0.0603
Upshot-Knothole Ruth	0.2	4145	4363	3731	-0.0525	0.098
Sunbeam JonnieBoy	0.5	5182	4388	5106	0.1531	0.0116
Plumbbob Laplace	1	6096	6323	5139	-0.0373	0.1547
Hardtackii SantaFe	1.3	5486	5987	5841	-0.0913	-0.0676
Hardtackii Lea	1.4	5182	6269	5877	-0.2099	-0.1375
Plumbbob John	2	13411	11944	12371	0.1094	0.0762
Hardtackii Mora	2	5639	6254	6290	-0.1091	-0.1188
Hardtackii DeBaca	2.2	5334	6722	6439	-0,2602	-0.2104
Plumbbob FranklinPrime	4.7	9754	7345	7184	0.2469	0.2613
Hardtackii Sanford	4.9	7925	7337	7188	0.0742	0.09
Hardtackii Socorro	6	7925	8005	7863	-0.0101	0.0053
Plumbbob Morgan	8	12192	8210	8016	0.3266	0.3405
Plumbbob Owens	9.7	10668	8844	8345	0.171	0.2154
Plumbbob Kepler	10	8534	9114	8437	-0.0679	0.0082
Plumbbob Wilson	10	10668	9429	8722	0.1162	0.1771
Upshot-Knothole Dixie	11	13716	11743	10126	0.1438	0.26
Plumbbob Doppler	11	11582	9054	8963	0.2183	0.2237
Plumbbob Fizeau	11	12192	9296	8526	0.2376	0.2984
Plumbbob Galileo	11	11278	9477	8589	0.1597	0.2355
Plumbbob Boltzman	12	10058	11330	9308	-0.1264	0.0719
Plumbbob Charleston	12	9754	8543	9111	0.1241	0.063
Plumbbob Newton	12	9754	9790	9109	-0.0037	0.0631
Plumbbob Grable	15	10668	7523	9167	0.2948	0.1377
Upshot-Knothole Annie	16	12497	11358	8746	0.0912	0.265
Plumbbob Diablo	17	9754	10686	9783	-0.0956	-0.0089
Plumbbob Shasta	17	9754	10207	9534	-0.0464	0.0191
Plumbbob Stokes	19	11278	10465	9101	0.072	0.1014
Plumbbob Whitney	19	9144	10562	9775	-0.1551	-0.0727
Upshot-Knothole Badger	23	10973	10357	10200	0.0561	0.0676
Upshot-Knothole Nancy	24	12650	10622	9470	0.1603	0.2018
Upshot-Knothole Encore	27	12802	10922	10846	0.1468	0.1495
Upshot-Knothole Harry	32	12954	13952	11316	-0.0771	0.1237
Plumbbob Priscilla	37	13106	12301	11513	0.0615	0.1207
Redwing Lacrosse	40	11582	8988	10137	0.224	0.1138
Upshot-Knothole Simon	43	13411	13564	11053	-0.0114	0.1252
Plumbbob Smoky	44	11582	12760	11857	-0.1016	0.0484
Upshot-Knothole Climax	61	13015	13686	12495	-0.0516	0.038
Plumbbob Hood	74	14630	14687	13757	-0.0039	0.0574
Castle Koon	110	16154	14999	16980	0.0715	-0.052
Redwing Zuni	3500	24079	27285	31526	-0.1331	-0.271
Redwing Zum Redwing Tewa	5000	30175	29525	29502	0.0216	0.0178
Castle Bravo	15000	34747	36120	47117	-0.0395	-0.1169
Castle DI avu	13000	34141	30120	4/11/	-0.0393	-0.1109

Model Tuning & Validation

Iterative methodology


- Each local FRMS error minima is used to start a new iterative search branch
- Each iteration uses a 5 x 5 x 5 parameter grid
- The parameter space bounds are reduced by 50% in each direction, centered about the local minima, for each new iteration
- The iteration completes when the local FRMS minima between two subsequent iterations converge within 1%


Color contour maps

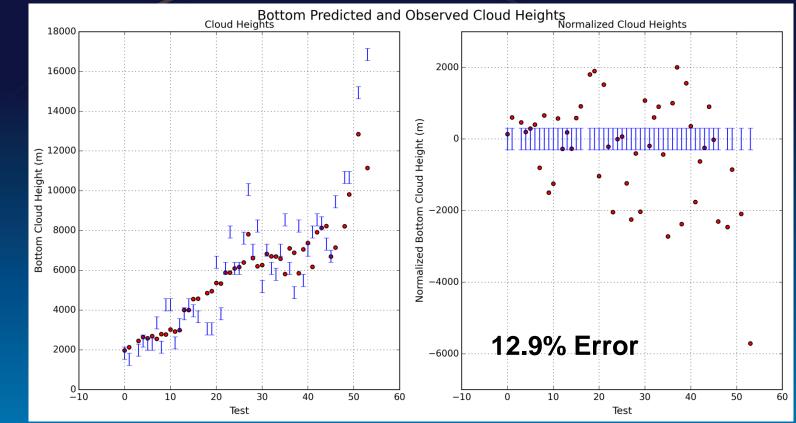
- Upper right Initial step for iterative search
- Lower right Final step for iterative search

Error minimizing tuning parameters

 μ = 0.198, k_2 = 0.152, and k_3 = 0.52725

UNCLASSIFIED

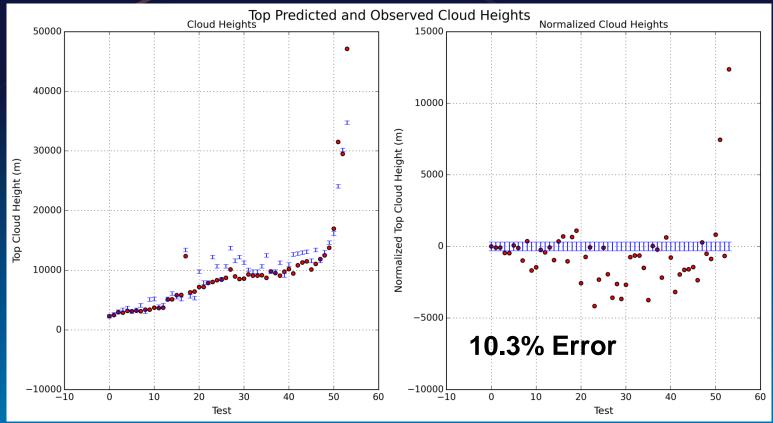
0.199310


0.198304 0.197297

0.193270

0.192264 0.191257

Model Validation – Bottom Height



Predicted vs. Observed Cloud Bottom Heights across all 54 test cases using the best fit tuning parameters. (**Right**) Absolute cloud heights and (**Left**) Normalized cloud heights showing only differences.

Model Validation – Top Height

Predicted vs. Observed Cloud Top Heights across all 54 test cases using the best fit tuning parameters. (Right) Absolute cloud heights and (Left)

Normalized cloud heights showing only differences.

DIORAMA Integration & Limitations Los Alamos Limitations LABORATORY

The cloud lofting module is fully integrated into DIORAMA

- Part of the LANL environment package
- Couples with the LANL XG (x-ray and gamma ray) packages
- Can be turned on/off with an optional module parameter

Limitations

- The model only simulates the buoyant forces and neglects the ballistic force which becomes important above ~50 km
- The model is fundamentally a continuum fluid model which will break down above ~200 km due to the rarefaction of the atmosphere
- The model neglects electromagnetic effects which would become important for high-altitude bursts above ~85 km
- Lack of observed cloud heights limits validating the model for high altitude bursts

Conclusions

- A parcel methodology was applied to develop the DIORAMA cloud lofting module
 - Based on the DELFIC model; treats cloud as homogenous unit
 - Solves set of 8 ODEs for cloud properties
 - Outputs the time history of the cloud height, radius, and other parameters
- The cloud lofting module was tuned with 54 test cases
 - An iterative brute force search was carried out to find the best fit tuning parameters
 - The best fit parameters yielded average cloud height errors of <u>12.9</u>% and <u>10.3</u>% for the bottom and top, respectively.
- Allows for more accurate modeling of the propagation of delayed gamma rays in DIORAMA